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The steady Euler equations are considered. Very accurate open boundary conditions are 
derived for the external problem when the outer boundary is an ellipse. These conditions have 
the same algebraic form as the corresponding conditions when the boundary is a straight line 
across an infinitely long channel. A new implementation is introduced for the external 
problem. At every time step a matrix is applied on a vector containing values from every grid 
point at the boundary. The computational work for these calculations is kept low by intro- 
ducing a special set of fewer boundary condition points. Experiments demonstrate the 
accuracy of the boundary procedure. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Artificial boundaries are often introduced when partial differential equations are 
to be solved numerically over unbounded regions. It is natural that no data are 
available at such a boundary, but data are needed to make the problem well posed. 
A simple procedure is to use such a large computational region that the free stream 
values can be used as good approximations to the solution at the boundary. If the 
computational region is not that large, more accurate boundary conditions must be 
used. Engquist and Majda [2, 31 derive a hierarchy of boundary conditions for the 
time-dependent problem. The principle is that the out-going waves should pass the 
boundary without leaving reflections back into the computational domain. The first 
approximation of the hierarchy is to set the in-going characteristic variables to the 
free stream values. That procedure has often been used for steady-state calculations, 
but again the computational region must be so large that these characteristic 
variables approximately take the free stream values at the boundary. Bayliss and 
Turkel [l] also derive boundary conditions by approximating the out-going waves. 
Gustafsson [7] generalizes the conditions by Engquist and Majda taking into 
account waves from the outside. His conditions are intended for the time-dependent 
problem. 

In this paper we derive conditions for the steady Euler equations when the outer 
boundary is an ellipse. The great advantage of the boundary conditions presented 
here is the accuracy, which makes it possible to use a relatively small computational 

55 
0021-9991/90 $3.00 

Copyright 0 1990 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



56 LARS FERM 

region. The problem considered here is to find the steady-state solution that 
matches the free stream data. Thus the converged solution should be independent 
of the initial one which we otherwise do not know how to choose. 

Only the steady-state equations will be considered when the boundary conditions 
are constructed here. The only approximation introduced is the freezing of the 
coefficient matrices of the differential equations. The fundamental solution of the 
constant coefftcient problem obtained is constructed, and the form of this solution 
leads to the boundary conditions. Since the boundary conditions are satisfied 
exactly by the fundamental solution, they will be called the fundamental boundary 
conditions. The method has already been developed for flow in a channel and when 
the flow is periodic in one of the Cartesian coordinates [4,5]. It is based on an idea 
given by Gustafsson and Kreiss [8]. Fix and Marin [6] propose a similar techni- 
que for the Helmholz equations. Hagstrom and Keller [9] discuss this type of 
boundary conditions from a general point of view. The boundary conditions are 
derived in Section 2. They are expressed as relations between the Fourier coef- 
ficients of the solution, but in the external case no Fourier transformations 
are carried out explicitly in a practical calculation. The implementation of the 
boundary conditions is described in Section 3. The accuracy of the boundary 
conditions is demonstrated by numerical experiments presented in Section 4. The 
program used for the computations in the interior has been developed at the FFA, 
Stockholm, Sweden, by A. W. Rizzi and L. E. Eriksson. Some conclusions are given 
in Section 5. 

2. CONSTRUCTION OF THE BOUNDARY CONDITIONS 

Consider the flow around an object like an airfoil, and introduce an ellipse as an 
artificial boundary around it. We assume that there are no discontinuities of the 
flow in the area outside the boundary. The construction of the boundary conditions 
depends only on the properties of the solution outside the ellipse. Thus discon- 
tinuities are allowed in the interior of the computational domain. The steady Euler 
equations are 

Aw, + Bw, = 0, (1) 
where 
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To construct the boundary conditions we introduce the constant free stream - - - - 
values denoted by p, u, V, p, . . . into the coefficient matrices of the differential equa- 
tions. By choosing a coordinate system with the x-axis parallel to the free stream 
direction, we get the condition 

v= 0. 

Thus the rank of the frozen matrix B is two, and hence the derivatives with respect 
to y can be eliminated from two equations. We get 

a p+pii~ 
ax p-c2p ( ) 

= 0. 

These equations lead to the local boundary conditions 

p+puu=p+pu2 

p - & = p - c2p. 

The frozen differential equations also lead to the system 

where 

These are the Cauchy-Riemann equations for the analytic function 

f(z) = VP + iv, 

(2) 

(3) 

(4) 

(5) 

(6) 

where 

z=x,+iy. 

Since the limit at infinity exists, the analytic function can be expanded in the power 
series 

f(z)= f awz-o, 
0=0 

or equivalently, 

f= f ~[b,cosw/+c,sino@]+i f +[cwcosofj-b,sino#], (7) 
w=o r W=Or 
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z = ,e” 

a,=b,+ic,. 

On the other hand, we introduce the Fourier expansions of p and o, 

w= P 
0 

= 
V 

f @w(r) Tco(#), 
w= --m 

(8) 

where 

T,(d) = 
cos of5 for 020, 
sin wd for w < 0, 

into definition (6) of the analytic function f(z). Identfying the terms obtained to 
those of expansion (7), we get for o # 0 

@Jr) + L(r) = 0, 

qL&) - Co(r) = 0. 
(9) 

The terms for o=O in expansion (7) are independent of r. Thus we obtain the 
conditions 

Conditions (9) and (10) are valid on circles enclosing the computational domain. 
They are thus valid as boundary conditions in the special case when the boundary 
in the z-plane is a circle. Furthermore, they are also valid as boundary conditions 
if the exterior region in the z-plane can be mapped analytically onto the region out- 
side a circle. This follows since we only used the analyticity of the functionf(z). 

Assume that the boundary in the original (x, y)-plane is a circle. The resealing 
(5) of the x-axis leads to an ellipse in the z-plane of the form 

where 

D = diag( di), di > 0. 
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By introducing the unit circle 

into the equation 

z=d’w+ d, -d2 1 -- 
2 2 w’ (12) 

we obtain the ellipse (11) in the z-plane. Equation (12) can be regarded as 
quadratic for w, and the two roots satisfy the condition 

Hence there is only one root outside the unit circle in the w-plane. Thus Eq. (12) 
defines an analytic mapping of the exterior region in the z-plane onto the region 
outside the unit circle in the w-plane. Hence boundary conditions (9) and (10) are 
valid for the Fourier coefficients with respect to 4. 

For some problems one might prefer a general ellipse as the artificial boundary 
in the original (x, y)-plane 

(13) 

where the matrix D is diagonal as in (1 l), and R is a rotational matrix needed 
when the free stream direction is not parallel to one of the axes of the ellipse. The 
boundary in the z-plane is also an ellipse, and a corresponding representation of it 
is introduced: 

(14) 

A rotation of the z-plane gives the ellipse the form (ll), and, as above, it is trans- 
formed to the unit circle with the parameter 4 as the angular coordinate. A relation 
between the parameters 8 and 4 is obtained from Eqs. (5), (13), (14): 

Being constant, the matrix M must have the form 

(15) 

M= 
cos * sin * 
*sin+ > rcos$ ’ 
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where II/ is a constant angle. Thus Eq. (15) leads to the condition 

The minus sign is omitted since 8 and 4 are assumed to run in the same direction 
around the boundary. Thus a rotation of the w-plane gives the boundary the form 

w, = eie. 

Since only analytic mappings are involved, the boundary conditions are valid for 
the Fourier coefficients with respect to 8. Hence the different mappings used in the 
derivation of the boundary conditions can be disregarded in practise. Only 
representation (13) of the original ellipse is needed. It can be pointed out that the 
technique used in this section is applicable for the channel problems studied 
in [4, 51. The unbounded regions are semi-infinite strips, and thus exponential 
functions can be used as the required analytic mappings. 

In the computations presented in Section 4 we will only treat flow with constant 
stagnation enthalpy h,, so that for a perfect gas the Bernoulli equation 

p,y-1 - p( 2ho - u* - u2), 
3 

replaces the last one of the four Eqs. (1). Thus we can eliminate the derivatives of 
the pressure from the remaining three equations using the chain rule. By linearizing 
the thus reduced system we obtain the systems (2) and (4) with p replaced by C*p, 
where C* = rp/p. The second Eq. (2) is omitted. Thus the second condition (3) will 
not be tested experimentally here, but it was used in [4] for flow in a channel with 
solid walls. 

3. IMPLEMENTATION OF THE BOUNDARY CONDITIONS 

Conditions (3), (9), and (10) form a complete set of boundary conditions for the 
differential equations, but extra numerical conditions are needed for the discretized 
problem. The numerical conditions considered here are extrapolations from the 
interior of the out-going characteristic variables of the time-dependent problem. 
These characteristic variables correspond to the linearized one-dimensional 
problem in the direction perpendicular to the boundary. Other linear boundary 
conditions can be treated similarly. 

At an outflow point there are three out-going characteristic variables. At an 
inflow point there is only one, but we add the two local conditions (3). Thus there 
are three local conditions at every boundary point. The discrete boundary values 
are denoted by p,, uj, Vi, and pj, j= 1, . . . . N, where N is the number of boundary 
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points. We eliminate uj and pi from these three conditions, and get a local condition 
for pi and vj only, 

ajpj + bjvj = hi, j = 1, 2, . . . . N. (16) 

For flow in a channel with solid walls it is natural to use a straight line across 
the channel as an artificial boundary. Thus the boundary is perpendicular to the 
free stream direction. It turns out that the characteristic variables take such a form 
that the coefficients aj are zero at the outflow boundary, and the coefficients bj are 
zero at the inflow boundary. Hence one of the variables pj and vi can be determined 
using local conditions only. By Fourier transforming this variable along the 
boundary, the global conditions can be applied explicitly. The obtained values are 
transformed back to the physical space. 

The boundary conditions are also applicable when the problem is periodic in one 
of the Cartesian coordinates, and the boundary is a straight line in the periodic 
direction. We cannot assume that the free stream direction is perpendicular to this 
boundary, and hence usually not calculate pj or vi using the local conditions only. 
However, by linearizing around the same state at all points when defining the 
characteristic variables, the coefficients aj and bj become independent of j. Thus the 
Fourier coefficients of p or v can be determined from those of h, and hence the 
procedure becomes similar to that of the channel problem. 

If the boundary is an ellipse, the characteristic variables are different linear 
combinations of the physical ones at different points at the boundary. Thus a new 
technique is needed. 

We let the vectors p, and v1 contain the values of p and v at those points where 
lajl < Ibjl. The remaining values are stored in vectors p2 and v2. Thus we may 
assume that the local conditions (16) have the form 

(;;)=G(j+h, (17) 

where G is a diagonal matrix and the vector h contains the values hi determined 
locally. We write the global conditions (9) and (10) as 

where B1 and B2 are N x N-matrices, and the vectors fi and 8 contain the Fourier 
coefficients of the finite expansions corresponding to (8). The vector q, contains 
only zeros but for the element p from condition (10). The corresponding conditions 
for the physical variables are 

BJ(;:)+B,F(:;)=q,, (18) 
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where F is the Fourier matrix relating the physical and Fourier spaces. These 
conditions can also be written as 

Introducing the local conditions (17), we get 

=Ch+q, 

(19) 

(20) 

where 

C= -B;‘B4 

q=B;‘q, 

B,=B,+B,G. 

Condition (20) is applied at every time step when the local values h have been 
calculated. The remaining variables are then determined using the local conditions. 

Calculation of the matrix C involves matrix operations which are too large to be 
carried out every time step. The matrix is determined by the matrices .in condi- 
tion (19), and by the coefficients aj and bj of the local conditions (16). The former 
are independent of time but the latter are changed when the flow switches between 
an inflow and an outflow state. Hence the local conditions must be modified at 
those critical points where that might happen. The outflow and inflow states have 
one local condition in common, since one of the characteristics always leaves the 
computational domain. We modify this common condition at the critical points by 
setting the coefficient for uj to zero in the definition of the extrapolated variable. 
The coefficient for pi is zero from the beginning. Thus the common condition takes 
the form (16), and hence the coefficients aj and bj are independent of the other two 
local conditions. Those points where the angle between the velocity vector and the 
tangent of the boundary is small, are treated as critical points. If the flow during 
the computation switches between inflow and outflow at a non-critical point, the 
matrix C must be regenerated. That problem did not appear in the experiments 
presented below. When the flow is close to the steady state, the limit angle for 
classing a point as critical can be reduced. In the experiments the limit angle was 
set proportional to the residual, and the number of critical points was reduced once 
or twice during the computation. Finally, no points were treated as critical. 

The matrix F in condition (18) is the usual Fourier matrix if the boundary 
points are uniformly spaced with respect to the angular coordinate describing the 
boundary. If the boundary points are not uniformly spaced, we can still easily 
express the physical variables in terms of the Fourier coefficients. Thus the matrix 
F can be calculated using a matrix inversion. However, when this technique was 
tested in practise, the resulting boundary conditions did not work at all. Thus 
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another method is needed. A simple procedure that works well is to use two sets 
of boundary points, one containing the boundary points of the interior grid and 
one containing uniformly spaced points for the boundary conditions. Local 
polynomial interpolations transfer the solution back and forth between the two 
point sets. Values at four gridpoints are used for these interpolations in most of the 
experiments presented in the next section. A great advantage of this method is that 
the number of boundary condition points can be chosen independently of the grid 
in the interior. Thus the order of the matrix C can be reduced by using fewer 
boundary condition points. 

We summarize the boundary procedure. 
Choose a set of uniformly spaced boundary points. They can be chosen 

independently of the grid in the interior. Construct the matrix C and the vector q 
in condition (20) as described above. The calculations every time step are 

1. Extrapolate the solution from the interior to the boundary. 
2. Interpolate the solution locally to the uniformly spaced boundary condi- 

tion points. 
3. Use the interpolated values to calculate the vector h in condition (17), and 

apply the matrix C. One value, pi or vj, is thus obtained at every boundary point. 
4. Calculate the remaining values at these points using the local conditions. 
5. Interpolate the solution back to the original boundary points. 
6. Calculate the final boundary values using the step l-values for the out- 

going characteristic variables, and the step 5-values for the in-going ones. 

It has turned out that the last step improves the convergence rate slightly. The 
implementation described above is applicable for the reduced problem mentioned at 
the end of the preceding section if p is replaced by p. We eliminate uj from two local 
conditions at every boundary point to get one condition for pj and vj only. 

4. NUMERICAL EXPERIMENTS 

The only approximation introduced when the boundary conditions are con- 
structed is the freezing of the coefftcient matrices of the differential equations. The 
experiments presented in this section demonstrate the accuracy of the procedure for 
the true non-linear problem. 

The boundary conditions are introduced into a program developed at the FFA, 
Stockholm, Sweden by A. W. R&i. The program is built up by a time-dependent 
finite-volume method with a multi-stage explicit scheme in time [lo]. The meshes 
are generated by L. E. Eriksson’s (FFA) transtinite interpolation program. As 
mentioned above the pressure is eliminated from the system assuming constant 
stagnation enthalpy. 

As a test problem we consider the flow around a NACAO012 airfoil at a 1” angle 

581/91/l-5 
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FIG. 1. Level curves of the solution of the test problem: The pressure to the left and the Mach 
number to the right. 

FIG. 2. The type of mesh used in the experiments. 
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of attack. The free stream Mach number is 0.85. The Mach number and the 
pressure of the solution are plotted in Fig. 1. The flow is supersonic in an area 
reaching about 1.8 cord lengths from the airfoil. We expect that the true non-linear 
equations are needed in that area. A 129 x 27 grid is generated over a region with 
radius 2.3 cord lengths with the boundary points given by the intersection between 
the boundary and the grid lines of a mesh over a larger region. The boundary 
points are thus not uniformly spaced with respect to the angular coordinate. The 
region is enlarged by adding new circular grid rings around it. The innermost part 
of the grid is shown in Fig. 2. New grids are generated over smaller regions with 
radii 1.5 and 1.9. If the region is decreased further, an ellipse would be advan- 
tageous as the outer boundary. The solution of the incompressible equations is 
smoother, and high accuracy of the boundary conditions can be expected very close 
to the airfoil. Experiments confirming that have been carried out using an ellipse 
with eccentricity 4 and the major axis 1.2 ( = 2 x 0.6) cord lengths. Since the incom- 
pressible equations can be solved efficiently by other methods, they will not be 
considered here. 

Three different boundary procedures will be compared 

C-The free stream values are used for the characteristic variables corre- 
sponding to the in-going characteristics. The differential equations are frozen at the 
free stream values when the characteristic variables are defined. Values from the 
interior are used for the out-going characteristic variables. 

R-The boundary conditions used by Rizzi in the original program. They are 
similar to the C-conditions, but the Riemann-invariants of the non-linear equations 
are used. The accuracy is improved by adding a vortex correction term to the free 
stream values in the boundary conditions. 

F-The fundamental boundary conditions studied here. 

Results obtained with these boundary conditions for different sizes of the domain 
are shown in Fig. 3. The pitch moment, lift, and drag are plotted as functions of the 
radius. Horizontal lines are drawn through the values obtained using the largest 
region with r = 13. Since the F-results for T = 4.1 and r = 13 are almost identical, we 
conclude that the linearized equations approximate the solution well in the region 
4.1~ r < 13. The solution should be smoother outside this region than in the 
interior. Thus the linearized system should approximate the solution even better for 
r > 13, and hence the F-values at r = 13 should be close to the true ones. The vortex 
correction term of the R-conditions is based on the lift at the surface of the airfoil. 
A comparision between the C- and R-results indicates that this term improves the 
lift value considerably. Yet the r-dependency of the lift is about three times less with 
the F-conditions. Actually the R-lift at r = 13 is close to the F-lift at r = 2, inter- 
polated from the results for r = 1.9 and r = 2.3. The errors increase rapidly for all 
boundary conditions in the supersonic area. Apart from the vortex correction term 
of the R-conditions, the R-, C-, and F-conditions are equivalent for a constant 
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solution. The vortex correction term is of the order l/r. Thus the three boundary 
conditions should be equivalent in the limit when the region increases. 

As described in the preceding section the order of the matrix C in condition (20) 
can be reduced by using fewer boundary condition points. Denote the number of 
those points by N. The effect of reducing N is studied by solving the problem with 
N= 8, 16, 32, 64, and 128. We use the grid with radius 2.3 for these calculations. 
The circulation, pitch moment, drag, and lift are calculated. The results are nor- 
malized making the value for N= 128 equal to 100. They are plotted in Fig. 4. A 
smoothing operator is introduced at the interpolation between the two point sets 
for N = 8, otherwise the solution does not converge. This is the source of most of 
the large errors shown in the figure for N = 8. The smoothing operator is not 
needed for larger values of N, but the number of steps is slightly increased for 
N= 16. The experiments indicate that N can be reduced to 32, i.e., by a factor 4 
with very little loss of accuracy and convergence rate. Thus the computational work 
at the boundary is reduced to less than that over one grid ring in the interior. 

The experiments presented above show that the F-conditions make it possible to 
reduce the computational region considerably, and that the computational work at 
the boundary can be kept low every time step. The total amount of work depends 
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FIG. 3. Results as functions of the radius of the domain for different boundary conditions: 
0 C-conditions; 0 R-conditions; x F-conditions. (a) Lift; (b) Drag; (c) Pitch moment. 



OPEN BOUNDARY CONDITIONS 67 

DRAG 

0.050 

0.040 

0.030 

, , , / 1 , , , IRADIUS 

0. 2. 4. 6. 8. 10. 12. 14 

PMOM 
0.000 1 

-0.020 -1 

-0.040 

-0.060 

-0.080 

-0.100 

0. 2. 4. 6. 8. 10. 12. 14. 

FIG. 3-Continued 



68 LARS FERM 

96. 

94. 

92. 

90. I I I I I IN 

0. 20. 40. 60. 80. 100. 120. 140. 

FIG 4. Normalized results for different numbers of boundary condition points: 0 Drag x Circula- 
tion + Lift; 0 Pitch moment. 

also on the number of grid points needed in the different regions and the number 
of time steps needed to reach the steady state. We will not optimize the grids here, 
but it could be interesting to look at the convergence rates with the particular grids 
used in the calculations presented above. It turns out that the F-conditions delay 
the convergence to the steady state on a fixed grid. The C-conditions lead to the 
most rapid convergence. However, when the computational region is decreased, the 
convergence rate increases again. The F-values at r = 2.3 are close to the R-values 
at r = 13 in Fig. 3. Thus it is interesting to compare the number of time steps needed 
to obtain these results. The grids coincide in the small region. The distance between 
the grid rings is increased by factor 1.2 for every new ring outside the smaller 
region. The number of grid rings in the two regions are 27 and 41. The logarithm 
of the residual is plotted in Fig. 5. The decay rates are obviously very similar. It 
should be pointed out that these results could be different if the grids were strictly 
optimized. Thus the amount of saved computational work may not be as large as 
30% with such grids. The efficiency of the boundary conditions may also depend 
on the required accuracy. They seem to be most interesting when high accuracy is 
important. The efficiency may also be different with another kind of grid, and with 
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FIG. 5. Convergence history for the R-conditions with r = 2.3 and the F-conditions with r = 13. 

another numerical method for the computations in the interior. No effort has been 
made to find a method which suits the boundary procedure well. The equations 
have just been solved with an available program. 

We have just considered one test problem here. However, nothing is assumed 
about the configuration in the interior when the boundary conditions are 
constructed. The applicability for other configurations should thus mainly depend 
on the behavior of the solution outside the boundary. If, for example, the Mach 
number or angle of attack is changed, the size of the supersonic area should give 
a rough guideline to the choice of outer boundary. 

5. CONCLUSIONS 

Very accurate boundary conditions have been derived for the external problem 
in two space dimensions. The accuracy made it possible to reduce the radius of the 
computational region by a factor 5. By reducing the number of boundary condition 
points by a factor 4, the computational work at the boundary every time step could 
be kept low. 



70 LARS FERM 

ACKNOWLEDGMENTS 

I thank Professor Bertil Gustafsson for many valuable advise. The work has been supported 
financially by the Institute for Applied Mathematics, ITM, Stockholm, Sweden, and the Swedish Board 
for Technical Development. 

REFERENCES 

1. A. BAYLW AND E. TURKEL, J. Comput. Phys. 48, 182 (1982). 
2. B. ENGQUIST AND A. MAJDA, Math. Comput. 31, 629 (1977). 
3. B. ENGQUIST AND A. MAJDA, Commun. Pure Appl. Math. 32, 312 (1979). 
4. L. FERM, J. Comput. Phys. 78, 94 (1988). 
5. L. FERM AND B. GUSTAFSSQN, Comput. Fluids 10, 261 (1982). 
6. G. J. FIX AND S. P. MARIN, J. Comput. Phys. 28, 253 (1978). 
7. B. GUSTAFSSON, SIAM J. Sci. Comput. 9, 812 (1988). 
8. B. GUSTAFS~N AND H. 0. KRFSS, J. Comput. Phys. 30, 333 (1979). 
9. T. HAGSTROM AND H. B. KELLER, SIAM J. Math. Anal. 17, 322 (1986). 

10. A. RIZZI AND L. E. ERIKSSON, J. Fluid. Mech. 148, 45 (1984). 


